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1. Introduction

In the field of dynamic stability of structures, the research regarding cylindrical shells subjected to a harmonic
excitation in axial direction encompasses a large and significant part of the present literature, see [1-4] and references
cited therein. The majority of these analyses consider parametric instabilities of bare cylindrical shells, i.e. axi-
asymmetrical vibration modes are excited through a Mathieu type of instability. In practise, a cylindrical shell is often
employed as a support structure for carrying a substantial top mass. In this case, a relatively low frequency resonance,
corresponding to a vibration mode dominated by axial displacements of the (cylindrical shell with) top mass, i.e. a kind of
suspension mode, is introduced.

In [5], it is shown that for the case of a top mass, which can only move in vertical direction, the dynamic stability limits
of the harmonically, axially excited cylindrical shell are no longer dictated by parametric instabilities in the high frequency
range (near excitation frequencies equal to two times the eigenfrequency of an axi-asymmetrical vibration mode). Instead,
the dynamic stability limits are now found in the top of a low frequency resonance far below the parametric instability
regions, corresponding to the suspension mode introduced in the previous paragraph. To be more specific, by increasing
the amplitude of the prescribed base-acceleration, the harmonic response may become unstable in the resonance peak, and
a beating type of response with severe (undesired) out-of-plane deformations of the cylindrical shell may appear instead.
Furthermore and similar to the case of static buckling of axially compressed cylindrical shells, it is illustrated in [5] that the
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critical value for the amplitude of the prescribed harmonic base-acceleration, for which the harmonic response changes to
the severe post-critical response, highly depends on the initial imperfections present in the shell.

The objective of this paper is to validate these results. Hereto, experimental results for a base-excited thin cylindrical shell
with top mass will be presented and a comparison with semi-analytical results will be made. At the experimental setup used,
the base-excitation is realized by supplying a harmonic input voltage to an electrodynamic shaker system. For this case
the resulting base acceleration will not be purely harmonic, will not have a constant amplitude, but will be determined by the
dynamics of the shaker system carrying the thin cylindrical shell with top mass. In addition, the bare shaker table has a low
axial stiffness and a relatively high damping, due to the effect of back-voltage. If the cylindrical shell with top mass is fixed on
the shaker table, the shaker-shell-top mass structure exhibits two low frequency resonances (low frequency compared to
resonance frequencies corresponding to axi-asymmetrical modes of the cylindrical shell). The vibration mode corresponding
to the first resonance is dominated by the axial displacements of the shaker table. The vibration mode corresponding to the
second resonance is dominated by axial displacements of the (cylindrical shell with) top mass. This mode has some coupling
with the heavily damped shaker table motion resulting in some additional damping. If one would neglect the shaker dynamics
and would consider a prescribed harmonic base-acceleration instead, as considered in [5], the first resonance would disappear,
whereas the resonance frequency of the suspension mode of the top mass would shift to a lower frequency and would become
less damped. From the discussion above, it will be clear that results obtained by voltage excitation can only be compared in a
qualitative sense with results obtained by a prescribed harmonic base-acceleration, as considered in [5]. Therefore, to enable
quantitative comparison between experimental results and semi-analytical results in the current paper, the semi-analytical
model of the base-excited cylindrical shell with top mass will be coupled to a model of the electrodynamic shaker.
Furthermore, the cylindrical shell made from Poly Ethylene Terephthalate appeared to behave orthotropic in the elastic
domain. Therefore, in the current paper orthotropic material behaviour will be introduced in the semi-analytical modelling
approach developed in [5] for isotropic cylindrical shells.

Experimental results considering a base-excited cylindrical shell with a free top mass, i.e. the top mass is only
supported by the cylindrical shell, are presented in [6]. Near the resonance of the first axi-symmetric vibration mode, a
very severe unstationary response is found. In this region, the base-acceleration due to the shaker could not be controlled
to remain purely harmonic. Furthermore, the obtained results could not be explained using numerical simulations.
Consequently, a combined numerical and experimental analysis of a base-excited cylindrical shell carrying a top mass, as
will be presented in this paper, has not been previously presented.

The outline for this paper is as follows. In the next section, the experimental setup of the cylindrical shell with top mass
will be introduced and the material properties of the cylindrical shell will be determined. In Section 3, the coupled shaker-
structure model will be discussed. In Section 4, modal analysis and static buckling analysis will be performed and results
will be compared with finite element analysis (FEA) results. The theoretical modal analysis results will be compared with
experimental results. Dynamic stability of the cylindrical shell with top mass excited by the shaker will be studied
numerically in Section 5 and experimentally in Section 6. Finally, in Section 7 conclusions will be presented.

2. Experimental setup

The seamless cylindrical shell, which is used for the experiments, is cut out from an unused beverage bottle made of
Poly Ethylene Terephthalate (PET), see Fig. 1. The obtained cylindrical shell has radius R (measured at the neutral plane)
and (average) thickness h. The shell thickness varies in axial direction by approximately 2 percent. The PET bottle is
produced by using a blow moulding technique. During this process, the material is stretched in the axial direction of the
bottle and subsequently in the circumferential direction of the bottle. Since this biaxial stretching is performed with
different stretch ratios in the two (perpendicular) directions, a directional dependency of the elasticity properties is
introduced. The elasticity properties of a biaxially stretched, thin PET film may fairly well be approximated using an
orthotropic symmetric material description, with principle directions aligned with the two stretch directions [7]. This
approximation is also used here to model the elasticity properties of the PET cylindrical shell. More specifically, the shell is
assumed to be made of orthotropic material with principle directions e; and e, coinciding with, respectively, the axial
coordinate x and the circumferential coordinate 6 (i.e. the two stretch directions), see Fig. 1. The orthotropic shell material
model is described by four parameters, i.e. Young’s moduli in x and 0 direction (E, and Ej), the shear modulus G,y, and one
Poisson’s ratio (either vy or vy, since v4Ey = v4Ey). The procedure followed to identify these parameters is discussed in detail
in [8]. The resulting material and geometrical parameter values are listed in Table 1.

Since the in-plane boundary conditions have a significant influence on the thin shell behaviour [9-11], special effort is
taken to obtain a rigid clamping of the cylindrical edges. An exploded view of the construction used to clamp edges of the
cylindrical shell is depicted in Fig. 2. The cylindrical shell edge is fixed between an inner ring, which fits exactly to the inner
diameter of the shell, and an open ring with conical outer shape. The outer ring, which has a conical inner shape, is screwed
over the open ring on the inner ring. In this manner, the open ring is compressed radially on the cylindrical shell surface,
resulting in a stiff circle line contact between the clamping rings and the thin shell. Air outlets at the bottom clamping
structure avoid entrapment of air in the shell.

The experimental setup is depicted in Fig. 3. The thin cylindrical shell, which is fixed between clamping rings both at its
top and at its bottom, is mounted between two linear sledges with very low friction in axial direction, see Fig. 3. At the top
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Fig. 1. Cylindrical shell from PET beverage bottle.

Table 1
Material and geometrical properties of the orthotropic cylindrical shell.

Eyx 3.85 (GPa) Ep 6.00 (GPa) Gy 1.94 (GPa)
Vy 0.25 =) Vo 0.39 (=) p 1350 (kg/m3)
L 85 (mm) R 44 (mm) h 0.23 (mm) (R/h=191)

<€— outer ring
=

cylindrical shell
<— open ring

inner ring

Fig. 2. Exploded view of one clamping ring for cylindrical shell.

side, the linear sledge is based on air bearings. At the bottom side, the linear sledge is realized by an elastic mechanism
based on elastic leaf springs. The purpose of these support mechanisms is to minimize transversal motions and rotations of
the cylindrical shell edges. The upper linear sledge and upper clamping structure actually act as the rigid top mass (total
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Power amplifier

Fig. 3. Picture and schematic overview of the experimental setup ((a) top linear sledge based on air bearings, (b) linear variable differential transformer
(LVDT), (c) cylindrical shell, (d) laser vibrometer, (e) bottom elastic support mechanism, (f) electrodynamic shaker).

mass m,=4.7 kg). The moving mass of the lower linear sledge, including the mass of the bottom clamping structure and the
mass of the shaker armature, equals m,=4.1kg.

The axial base-excitation is realized using an electrodynamic shaker system (type LDS PA1000L/LDS V455), see Fig. 3. A
periodic excitation is introduced by supplying a harmonically varying input voltage

Eo(t) = vgsin2mnft) [V], (1)

to the power amplifier, which output voltage is supplied to the shaker. The amplifier works in a voltage mode of operation,
i.e. the output voltage of the amplifier is kept proportional to its input voltage. No active feedback is used to control the
acceleration of the shaker armature Uy. Consequently, as stated before, the resulting acceleration of the shaker (and thus
the effective axial force on the cylindrical shell with top mass) will not be proportional to Eq. (1), but will be determined by
the dynamics of the electro-mechanical shaker system carrying the cylindrical shell with top mass.

For dynamic response measurements, two sensors are used. Firstly, the relative axial displacement of the top mass Uy(t),
see Fig. 3, is measured using a Shaevitz 100 MHR linear variable differential transformer (LVDT). Furthermore, a laser
vibrometer (Ono Sokki LV 1500) is used to measure the transversal velocity w at one point of the cylindrical shell. The
signal of the laser vibrometer is numerically integrated to obtain measurements in terms of transversal displacements w.
To avoid drift during the numerical integration, the measurement signal is filtered using a high-pass filter with a cut-off
frequency of f=1.6Hz. The data-acquisition and input signal generation is performed using a laptop equipped with
Matlab/Simulink in combination with a TUeDACS AQI [12]. The sample frequency used is 4 kHz.

3. Modelling approach

In this section, the equations of motion are derived for the thin orthotropic cylindrical shell carrying a rigid top mass m,.
Since the cylindrical shell is excited at its base in axial direction by an electrodynamic shaker, an electro-mechanical model
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of the shaker will be included in the semi-analytical model, in order to be able to compare the experimental results with
the semi-analytical results. The modelling of the orthotropic cylindrical shell with top mass is based on the same
assumptions adopted in [5] for the modelling of an isotropic cylindrical shell with top mass.

3.1. Cylindrical shell model

The dimensions of the cylindrical shell are defined by the radius of the neutral plane R, thickness h, and length L.
Considering the cylindrical coordinate system [r = R, x, 0] defined in Fig. 1, the axial in-plane displacement field is denoted
by u(t,x,0), the circumferential in-plane displacement field by v(t,x, 0), the radial out-of-plane displacement field by
w(t, x, 0), and the radial imperfection shape by wy(x, 6). For readability, the notations for the displacement fields and radial
imperfection shape will be abbreviated to u, v, w, and wy, respectively. The axial coordinate x and axial displacement field u
are measured relative to the base-motion Uy, (t).

According to Donnell's assumptions, the nonlinear strain-displacement relations read [13,14]

2
Ex=1Ux +%W,x FWaxWo.x, Kx=—Wx,

1 1 2 1 1
&)= g T W)t 53 W + g WagWosp, Ko = — g3 Wago-
1 1 1
Vx0 = R Ug+Vx+ R (WxW,0 +W,xWo,g+Wo.xW,g), Kxg=— R Wox0, (2)

where ,, means 3/0x and ,y means 0/00. Note that in Eq. (2), the radial displacement field w and the radial imperfection
shape wy are measured positively inwards.

Considering orthotropic material properties with principle axes, which coincide with the cylindrical coordinate axes,
the stress resultants and stress couples per unit length are defined by [15,16]

Ny Ch G2 O &x My 2 Ci G2 O Kx
Ng | =h|Cy G O & |, My |=—=1|C1 G O Ko |, (3)
Nx0 0 0 C33 Vxo0 Mx(? 0 0 C33 Kxo
where
Ex Ey Ex

Cn= , Cp=

" G3 =Gy, Cr2=0C (4)

_Tx =Vy—.
1—vyvg T

The following boundary conditions for the cylindrical shell with rigid end-disks are considered (‘- means not
prescribed)

|uu,9uwa

x=0/ 0 0 0 0 O (5)
x=Ll - 0 0 0 0

Note that the base-motion does not appear in the boundary conditions, since u and x are measured relative
to Up(t). Indeed, for a thin cylindrical shell mounted between two rigid end-disks, the clamping condition (in practice)
is probably closer to the condition w,, = 0 than to the condition M, = 0. Nevertheless, the clamping condition is assumed
to be M, = 0, since this allows for a simple expansion of w. This assumption is supported by the fact, that previous
studies show, that the rotational boundary condition (M, = 0 vs. w,, = 0) has only a mild influence on the eigenfrequencies
[9,10], parametric instabilities [17], and nonlinear vibrations [10,11]. The boundary condition in terms of the
membrane force N, at x=L, due to the inertia force of the top mass, is not included. This force will be included via the
kinetic energy.
The strain energy of the structure, corresponding to Donnell’s assumptions, reads as follows:

1 2n L 1 2n L
Us = j/ / (Nx8x+N686+Nx6VX(-))dXRd9+i/ / (MyKx+MyKg+MygKyg) dx RdO. (6)
o Jo o Jo

The case m; > mgey, where m; is the top mass and mgey is the mass of the shell, is considered. Therefore, the contribution of
the mass of the shell is neglected in the gravitational potential energy of the structure

Uy = mg(Up(t)+u(t, L, 0)), (7)
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where g is the acceleration due to gravity. Furthermore, the influence of in-plane inertia of the shell is also neglected in the
kinetic energy

1 2n L 9 1 .
T = jph/ / W* dxRdO+ 5 myig, (8)
0 0

where 11, = Up(t) +1(t, L, 0).
Based on Egs. (6)-(8), the nonlinear equilibrium equations become

RNx,x+Nx0 = 0’ (9)
RNyp+Ny,p =0, (10)

2 1 1 2 1 .
Moo+ 5 Mxosxo + gz Mosoo + 5 No+Ne(Waox +Wos00) + 5 Nig(Waxg +Wo.x0) + 1 No(Wag0 +Wo.0) = phw. (11)

Since the effects of in-plane inertia are neglected, these equations constitute a set of two static in-plane equilibrium
equations (Egs. (9)-(10)) and one dynamic out-of-plane equilibrium equation (Eq. (11)).
The out-of-plane displacement field is expanded as

N M
w(t,x,0)= > > [Q§(t)sin(ind)+Qf(t)cos(jnd)lsin(Zix), (12)
i=1j=0
where 2; =in/L, i is the number of axial half-waves, n is the number of circumferential waves, and Qisj*c(t) are N(2M+1)
generalized degrees of freedom (DOFs). Note that Eq. (12) exactly satisfies the boundary conditions for w, see Eq. (5). The N
DOFs Qf(t) correspond to axi-symmetrical radial displacements and the 2NM DOFs ij*c(t) (j#0) to axi-asymmetrical
displacement fields. The presence of pairs of companion modes (related to DOFs Qj and DOFs Qf for j0) with the same
shape, but with a different angular orientation, is due to axi-symmetry of the (perfect) shell [2-4,18].
The following (axi-asymmetrical) expansion of the radial imperfection wy is considered

Ne o . [inx
Wo(x,0)=h 121 e;sin(nf)sin (T) , (13)
where N, <N and e; are dimensionless imperfection amplitudes.

Using the above expressions for w and wy, the in-plane equilibrium equations (Egs. (9)-(10)) now consist of a set of
linear coupled inhomogeneous partial differential equations (PDEs) in terms of u and v. In order to perform a reduction
of the three independent displacement fields to one independent displacement field w, these two PDEs are solved
symbolically. The solution procedure for this purpose is outlined in [8] and results in expressions for u and v, which are
functions of w and wy. These expressions exactly satisfy the in-plane equilibrium equations (Egs. (9)-(10)) and the in-plane
boundary conditions (Eq. (5)). During this step, an extra DOF U¢(t) = u(t, L, 0) is introduced, which corresponds to the axial
displacement of the top mass.

3.2. Shaker model

The linear model of the electrodynamic shaker is depicted in Fig. 4, where the electrical part and the mechanical part
are presented separately. The electrical part of the model (Fig. 4(a)) is described by a power amplifier, current I(t), coil
resistance R, coil inductance L, current-to-force constant ., and back voltage Ep,«(t) = —k:Uy. The power amplifier works
in a voltage-mode of operation. More specifically, in the frequency domain

E(]CU) = Gamp(jw)EO(jw), (14)

(a) (b)
U, (1)

Power amplifier R L ,[
my,

G

amp

Ey (1)

|

k, = F o (1)

Ch

E, back (t)

/ s

Fig. 4. Model of the electrodynamic shaker (electrical part (a), mechanical part (b)).
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Table 2
Parameters of shaker model and amplifier model.

Cb 278 (kg/s) L 2.6x 1073 (H) P —883 (=)
™My 3.0 (kg) Ke 115 (N/A) Damp 14107 s
ky 5.28 x 10* (N/m) R 0.9 1))

where Gymp(j®) (with j2 = —1) is the frequency dependent amplifier gain, E the amplifier output voltage, and E, the

amplifier input voltage.

Mass m,, of the mechanical part of the model (Fig. 4(b)) corresponds to the moving mass of the lower linear sledge,
including the mass of the bottom clamping and the mass of the shaker armature, see Fig. 3. This mass, which is supported
by an elastic suspension with stiffness kj, is excited by the electromagnetic force F.,¢(t) = kcI(t). The vertical displacement
of the mass is described by DOF U,,. Energy dissipation in the mechanical part of the shaker is modelled by a linear viscous
damping force with viscous damping constant cp. It should be noted that the shaker base is assumed to be rigidly
connected to the fixed world. If this assumption would not be valid, the mechanical part of the shaker model would need to
be extended to a multi-DOF model, resulting in more mechanical parameters to be identified, see for example [19].

The dynamics of the shaker are now described by the following two coupled ordinary differential equations [20]

Li+RI+ KUy =E(t), mpUp+c,Up+kpUp = il +Fegr, (15)

where E is related to Eq by Eq. (14), and Fy, is the force exerted to the shaker mass by the cylindrical shell with top mass.
Force Fg, in general depends on Qisj*c(t), Ui(t), and first and second time derivatives of these DOFs. During the identification
procedure of the unknown parameters of the excitation mechanism, in which the bare shaker was used, i.e. Fs;+=0N, a
frequency dependency of the amplifier gain defined by

Gamp(jw) = Pamp(bamp Sjo+1) (16)

is adopted to obtain a good fit of the combined shaker-amplifier dynamics for the frequency range of interest (0-300 Hz).
The parameters of the combined shaker-amplifier model are identified using frequency domain techniques, see [8] for
more details. The identified parameter values for the shaker model and the amplifier model are listed in Table 2. Note that
using Eq. (16), the time domain version of Eq. (14) becomes E(t) = Pamp(bampEo(t) +Eo(t)), where Eg is the known function of
time given by Eq. (1). This time domain version will be used in the next subsection.

3.3. The coupled shaker-structure model

The coupled shaker-structure model will be derived by following a charge-displacement formulation of Lagrange’s
equations [21]. In this formulation, energy and work expressions of the coupled structure are formulated in terms of
mechanical DOFs and, in this case, a single additional charge coordinate g, whose time derivative constitutes the current
through the electrical part of the shaker model, i.e. ¢ =1.

The total set of N(2M+1)+3 DOFs of the coupled model is collected in the column

Q* = [Qsl:()’ ) sNM’ QﬁM?Ut,Ub’ q]Ta (17)

where Qf; € and U; are the generalized DOFs of the structure and Uy, is the axial motion of the shaker (see Fig. 4).
Linear viscous damping is included in the cylindrical shell structure via the following Rayleigh dissipation function:

1 N M Lco 1 N M ) 1 2
RCy,:jzzcij(Qij) +§zzcik(Qik) + 56Uy, (18)
iZ1j=0 iZ1k=1

where ¢y, cik, and ¢, are positive constants. Furthermore, in the model of the cylindrical shell structure, the axial motions are
defined with respect to an arbitrary base motion Uy, see Eq. (8). For the coupled shaker-structure system, the energy and
work expressions and the Rayleigh dissipation function now become as follows:

M =1L4% +KcGUp,
1 2
7= Tcyl +7mbUb,
V =Us+Ug+ 3k U,
-2
R =Ry +3 Uy +1R,

5Wnc :E(t)5Q> (19)

where M is the magnetic energy of the moving coil of the shaker, and 6\, is the virtual work of E(t) [21], which is the
output voltage of the amplifier, see the previous subsection. Defining the Lagrangian £ of the complete system by



3156 N.J. Mallon et al. / Journal of Sound and Vibration 329 (2010) 3149-3170

(axi-sym. and axial-sym.) (axi-asym. and axial-sym.) (axi-asym. and axial-asym.)

Fig. 5. Three types of vibration modes of cylindrical shell (top mass not shown).

L =T+ M-V, the final coupled set of equations of motion can be determined by
d
™
where b = [0,...,0,1]T is an N(2M+1)+3 dimensional column. Among others, this will lead to an explicit expression for Fy,
the force exerted to the shaker mass by the cylindrical shell with top mass, which was introduced in Eq. (15).

o —ﬂ,Q* +R,Q* =bE(t), (20)

3.4. Selection of the number of DOFs

For the sake of brevity, only one specific expansion of w, see Eq. (12), will be considered. The specific expansion is
obtained by deleting, i.e. setting to zero, a number of DOFs, corresponding to the expansion of w with N=10 and M=2. The
deleted DOFs are DOFs Q3; € with i=2,4,...,10, which correspond to axial-asymmetrical radial displacements, and DOFs Q3
and Qf, which are companion modes of the kept (both axi-asymmetric and axial-symmetric) modes. More specifically, for
the analyses described in this paper, the out-of-plane displacement field is expanded as follows:

wit,x,0)= > [Qfp(t)+Qf ()sin(nb)+Qg(t)cos2no)]sin(4ix). (21)
i=13...9
Note that for the modes with 2n waves in circumferential direction, the modes with DOFs Qf; are selected, since these
modes are directly coupled (via a quadratic nonlinearity) to the modes with DOFs Qf;. The modes corresponding to
(deleted) DOFs Qj> would only posses a parametric coupling with the modes corresponding to DOFs Qj;.

The 15-DOF expansion of w given by Eq. (21) appears to be sufficient for accurately predicting the onset to the severe
beating response, as was also found for the case of prescribed base-acceleration, see [5]. DOFs Qfp correspond to modes
being both axi-symmetric and axial-symmetric. The mode depicted in Fig. 5(a) is a linear combination of modes of this type
and is therefore also both axi-symmetric and axial-symmetric itself. DOFs Qf; and Qf; correspond to modes being both
axial-symmetric and axi-asymmetric, where DOFs Qf; have a double number of circumferential waves compared to DOFs
Qf;. Fig. 5(b) shows an example of a mode consisting of a linear combination of modes being both axial-symmetric and axi-
asymmetric. As stated before, axial-asymmetrical modes are not included in Eq. (21). An example of such a mode, built
from a linear combination of modes of this type, is visible in Fig. 5(c). As mentioned at the end of Section 3.1, during the
step where the expressions for in-plane fields are solved, an extra DOF Ut is introduced, which corresponds to the relative
axial displacement of the top mass. After coupling to the shaker model, which is described by the two DOFs U, and g, the
resulting semi-analytical model now in total possesses 15+1+2=18 DOFs. In this model, only single mode imperfection
shapes, i.e. only one e; #0, will be considered.

4. Modal analysis and static buckling analysis

To obtain insight in the eigenfrequencies and damping ratios of the shaker-structure system, modal analyses are
performed. Experimental results will be compared with semi-analytical results (using the 18-DOF model with wg=0m)
and for some cases also with FEA results, obtained via the finite element (FE) package MSC.Marc. The used FE model of the
complete cylindrical shell consists of 30000 four-node thin shell elements based on Kirchhoff theory. In MSC.Marc these
elements are referred to by element type 139 [22]. The nonlinear kinematic relations used in the FE model are valid for
large displacements and moderate rotations. Both in the semi-analytical analysis and in the FEA, the effect of the preload
due to the weight of the top mass is taken into account. In order to carry out a modal analysis, both the semi-analytical
model and FE model are linearized around the static equilibrium solution.

First, the eigenfrequencies corresponding to the lowest two axi-symmetric modes are determined both experimentally
and by using the semi-analytical model. No FEA results are available for these two modes, since the electrical part of the
shaker could not be modelled in the FE package. For the experimental approach, frequency response functions (FRFs) are
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measured by exciting the system with a randomly varying input voltage E,, while measuring the relative axial
displacement of the top mass U;. In order to realize a linear response, the excitation level is kept low. The resulting
(averaged) FRF shows a heavily damped (¢; =0.30) resonance at f=f; ~12Hz and a moderately damped (¢, =0.05)
resonance at f = f, ~ 182 Hz, see Fig. 6. The first resonance corresponds to an axial suspension mode of the shaker mass, i.e.
a mode dominated by Uy,. The second resonance corresponds to an axial suspension mode dominated by Uy, see Fig. 5(a).
Based on the experimentally determined damping ratios, the damping parameter of the semi-analytical model ¢ (c; are
kept zero, see Eq. (18)) is tuned to fit these ratios. In Fig. 6, also the FRF obtained using the 18-DOF semi-analytical model is
depicted. As can be noted, up to f=300Hz the semi-analytical results are in very good agreement with the experimental
results. The measured FRF shows small resonances near f=350Hz, which are not present in the semi-analytical results. As
will be shown next, these resonances are not due to axi-asymmetric modes of the cylindrical shell, since these occur above
850Hz. In addition, these high-frequency modes only posses weak coupling with the axi-symmetric modes at 12 and
182 Hz, due to imperfections in the shell. Only for very large imperfections (e.g. amplitude 20 times the shell thickness),
some very minor influence can be noted in the FRF in the frequency region of the shell eigenfrequencies (i.e. near 1000 Hz).
Therefore, the resonances near f=350Hz are likely due to the finite stiffness of the shaker support structure.

The eigenfrequencies and damping ratios of the lowest axi-asymmetric vibrational eigenmodes of the cylindrical shell,
which are also axial-symmetric (see Fig. 5(b)), are experimentally determined for several values of n by exciting the top
mass using an impulse hammer. The resulting out-of-plane velocity is measured at height x=L/2, using the laser
vibrometer at 40 points, which are distributed equidistantly along the circumference of the shell. Based on these FRFs,
the eigenfrequencies with corresponding eigenmodes and damping ratios are determined, see [23] for more details.
The experimental results are shown in the 4th and 5th column of Table 3. For n=7 no experimental results are included,
since for this value of n no mode could be identified. In Table 3, also undamped eigenfrequencies of the perfect cylindrical
shell structure, determined using the semi-analytical approach (using the 18-DOF model) and using FEA, are shown in,
respectively, the 2nd and 3rd column. As can be noted, the semi-analytical results are in good correspondence with the FEA
results. The maximum difference is 2 percent for n=4. The semi-analytical results show an average difference of 8 percent
with the experimental results. Differences may be due to various reasons, e.g. due to imperfections, which are not
accounted for in the semi-analytical and FE model, due to inaccuracies in the identified material properties and/or due to
measurement inaccuracies.
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Fig. 6. FRF from input voltage Eo(t) to relative top mass displacement Ug(t).
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Table 3
Eigenfrequencies of lowest axi-asymmetric, axial-symmetric modes; both the 18-DOF and the FE model consider the undamped case for wo=0m; &,
denotes the experimentally estimated damping ratio.

n 18-DOF (Hz) FEA (Hz) Experiment (Hz) Enm (=)

4 1415 1387 1293 0.005
5 1070 1063 1030 0.007
6 896 896 886 0.010
7 858 858 - -

8 929 926 997 0.020
9 1076 1070 1165 0.010
10 1276 1268 1496 0.007
11 1514 1506 1683 0.020

Next, static buckling of the cylindrical shell is considered. In [24], an analytical expression is derived for the buckling
load of orthotropic cylindrical shells with simply supported boundary conditions and being subjected to axial edge loads. If
Eq. (29) from [24] is applied, the lowest buckling load for the cylindrical shell under consideration is estimated to be
P.=951 N. The corresponding buckling mode is characterized by n=6 and i=1. Recall that i is the number of half-waves in
axial direction, see Eq. (12). However, due to the fact that the cylindrical shell under consideration is mounted between
stiff end-rings, its real boundary conditions at both ends of the cylindrical shell are prescribed axial displacements rather
than axial edge loads. This difference in the in-plane boundary condition may slightly affect the buckling load and the
corresponding buckling mode of moderately long cylindrical shells, to which class the cylindrical shell under consideration
belongs [25]. The static buckling of the orthotropic (perfect) shell is also determined using a linearized buckling eigenvalue
analysis based on the 18-DOF semi-analytical model and, as a numerical reference, by using FEA based on the same model
as used for the modal analysis. Several values of the circumferential wavenumber n are considered. The 18-DOF semi-
analytical model predicts the lowest buckling load of the perfect cylindrical shell to be P.=990N and the corresponding
buckling mode is dominated by n=12 and i=7. The FEA predicts P.=975 N and a corresponding buckling mode dominated
by n=1 and i=9. Note that the buckling mode found by the FEA cannot be predicted accurately by the semi-analytical
model, since the adopted shell theory of Donnell is only valid for n > 4. As is well-known for thin cylindrical shells [25], just
above the first critical load, many additional closely spaced buckling loads are obtained. This is confirmed once again by the
results obtained above. The buckling loads obtained using the semi-analytical approach and the FEA differ only slightly
(2 percent). Based on the buckling load predicted by the FEA, the weight of the top mass, as considered during the
experiments, equals 5 percent of the static buckling load, i.e.m; - g/P. = 0.05 [-].

5. Numerical steady-state analysis

In this section, a numerical steady-state analysis will be performed for the total system consisting of the shaker, the
amplifier, and the cylindrical shell with top mass. The objective of this dynamic analysis is to determine, for which
combinations of excitation frequency f and amplitude v, of the input voltage, see Eq. (1)), instabilities occur, and how these
results depend on possible geometric imperfections in the cylindrical shell. The amount of damping taken into account
during the simulations is based on the experimental modal analysis results as discussed in the previous section, i.e. the
damping ratios of the lowest two (axi-symmetric) modes are set to £; = 0.3 and &, = 0.05 (related to ¢, and c;,). To all other
vibration modes a damping ratio £ = 0.01 is assigned, which is realized via parameters c;;. This value corresponds, more or
less, to the average of the experimentally determined damping ratios of the lowest axi-asymmetric modes, see Table 3.

Numerical continuation of periodic solutions [26] in combination with Floquet theory will be used to determine the
parameter region(s), where the stability of the harmonic response is lost. In the frequency regions, where the harmonic
response is no longer stable, the response is further examined using standard numerical integration and a numerical
implementation of a stepped frequency sweep procedure. Detailed results are presented for a circumferential wavenumber
n=9, while considering three (single mode) imperfection shapes, i.e. e,=0.5, e3=0.5, or e5=0.5. The influence of the selected
value for n will be addressed at the end of this section. The responses of the cylindrical shell are characterized by the
following dimensionless measures:

up=u(t,L,0)/L, (22)
Un= mTax uL—mTin up >0, (23)
Wi 2 =w(t, L/2,7z/(2n))/h, (24)

where T=1/f. Note that u; can be directly computed from the DOF U,, which was introduced in the model at the end of
Section 3.1.

Using numerical continuation of periodic solutions with the excitation frequency f as continuation parameter, it is
found that for sufficiently large excitation amplitude v4, the harmonic response first loses stability in the top of the
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Fig. 7. Frequency-amplitude plot of the imperfect shell (e;=0.5).

resonance peak near f,=182 Hz. Recall, that the resonance near f=f, corresponds to a vibration mode, which is dominated
by axial displacements of the (cylindrical shell with) top mass, i.e. by U;. Similar to the case of prescribed base-acceleration,
discussed in [5], responses with large out-of-plane deflections appear, when the stability of the harmonic solution is lost.
The critical value of vy, for which the harmonic solution loses stability for f=f5, is called v§.

For the perfect cylindrical shell (wg=0 m), the harmonic solution loses stability in the peak of the resonance near f=f, for
vg = v3 = 0.298V. By introducing an imperfection of the form e;=0.5, this critical value decreases 15 percent to v§ =
0.253 V. For this case, the frequency-amplitude plots near f=f,, for v4 just below and just above v, are depicted in Fig. 7.

As can be noted, for vy > 15, a very complicated branch of unstable periodic solutions appears in the resonance peak
near f=f5, which is initiated by two cyclic fold bifurcations. The response in this region of instability is further examined
using standard numerical integration of the equations of motion, see Fig. 8. As can be noted, a beating response appears
in the region of instability. Time intervals with small out-of-plane displacements are alternated with time intervals,
where the out-of-plane response wy, of the shell is very severe. In the latter time intervals, very high frequencies can be
observed in the transversal acceleration signal w(L/2). In very short time periods associated with these high frequencies,
transversal accelerations of the shell up to 20000g occur. In these very short time periods, these accelerations lead to
transversal displacements in the order of the plate thickness, giving rise to nonlinear kinematic coupling between in-plane
motion and out-of-plane motion. For these very short time periods, the previous assumption, that the in-plane inertia of
the cylindrical shell can be neglected, may become questionable. This may lead to an overestimation of the transversal
acceleration. Transversal peak accelerations of the shell surface of 2100g are measured in experiments described in [6] for a
more or less comparable structure and situation; in [6], the top mass is free and five times lighter. The power spectral
density (PSD) of the beating response is broad-banded (see bottom plot of Fig. 8), suggesting that this response has a
chaotic nature.

A possible explaination for the occurring instability phenomenon may be the nonlinear interaction between the axial
mode near 182 Hz, see Fig. 5(a), and the shell type of modes present in the high frequency range, i.e. above approximately
850 Hz, see Table 3. Note that the modal density of the shell modes is quite high. The occurring interactions may be caused
by direct nonlinear couplings and/or parametric couplings present in the model. As will be shown, the instability
phenomenon appears to be robust. It also occurs for other imperfections e; and other circumferential wavenumbers n.

The response of the total system will be examined experimentally using a stepped sine frequency sweep procedure.
The obtained frequency-amplitude plots from these frequency sweep experiments cannot fully be compared with the
frequency-amplitude plots computed using the continuation approach, since the latter ones do not include aperiodic
responses (as obtained numerically for vq>vS). Therefore, the numerical response is also examined using an
implementation of the stepped sine procedure, which is based on numerical integration of the equations of motion.
During the stepped sine frequency sweep, the excitation frequency is incrementally increased (in case of sweep-up) or
decreased (in case of sweep-down) using a step size Af = 0.5 Hz. For each discrete value of f, the signals are saved during
N.=150 excitation periods. The data during the first N,=50 periods are not used, in order to minimize transient effects.
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Fig. 9. Frequency-amplitude plot based on frequency sweep analysis for e;=0.5 and v4=0.26V (simulation).

Subsequently, the following averaged response measures are determined:

Nm—1
Un= 1 < Z mTax uL(t,-+kTm)—n%in uL(t,-+kTm)>,
o n m

- 1 [Nm=l .
W= > max wy(t;+kTm)—min w5 (t;+kTm) |,
Nm \ = T Tm

(25)

(26)
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where T, = (Ne—NJ)T/N;, and N,,,=5 [-]. Note that for harmonic responses, U,, is equivalent with U, defined by Eq. (23).
Time t; indicates the time at which the i th incremental parameter change takes place. Exactly the same procedure with the
same settings for N, N;; and N; will be followed during the experiments.

Results for the numerical frequency sweep for e;=0.5 and v4 = 0.26 > v§ are shown in Fig. 9. Note that W, is plotted on
a logarithmic scale. Very severe out-of-plane responses are suddenly initiated at the boundaries of the region
182 < f <185, where no stable harmonic solutions are found with the continuation approach, see Fig. 7. Note that
frequency hysteresis is not observed in Fig. 9.
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Fig. 10. Frequency-amplitude plot of the imperfect shell (e3=0.5).
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Fig. 11. Response for vq = 0.15V, e3=0.5 and f=183 Hz in terms of wy, u;, and the power spectral density of wy .
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Next, an imperfection of the form es=0.5 is considered. Using continuation of periodic solutions for this case, a
somewhat different scenario is found in the top of the resonance near f=f,, see Fig. 10. First of all, the harmonic response
loses stability at a much lower value of vy, i.e. v5=0.145V. Furthermore, for v4 > v§ two regions of instability appear.
Between these two regions, a small branch with stable harmonic solutions is found, see enlargement A of Fig. 10. An
example of the response in the right region of instability at f=183 Hz is depicted in Fig. 11. As can be noted, the PSD of this
response shows many discrete peaks, which are equally spaced at AF/f =1/11, suggesting that this beating response is an
1/11 subharmonic response. By plotting T-sampled values of u; against T-sampled values of w;,, a Poincaré section of this
response is constructed, see the right plot of Fig. 13. The Poincaré section shows 11 dots, confirming the 1/11 subharmonic
nature of the response. In the left region of instability, a different type of response occurs at f=179 Hz, see Fig. 12. The PSD
of this response is broad-banded, suggesting that the response now has a chaotic nature. This suggestion is supported by
the fact that the Poincaré map of this response is a bounded cloud of points, see the left plot of Fig. 13. A numerical
frequency sweep analysis for e3=0.5 and v4 = 0.15 > v§ [V] reveals that in both regions, where no stable harmonic solutions
are obtained, again severe responses appear instead, see the left plots of Fig. 14. As an indication, for the results depicted in
Figs. 11 and 12, transversal accelerations in terms of w(L/2) of order 5000g are found. The right plots of Fig. 14 show that
for a slightly higher value of the input voltage amplitude (v4=0.17 V), the region of instability increases in width and also
starts to show softening behaviour.
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Fig. 12. Response for v4=0.15V, e3=0.5 and f=179 Hz in terms of wy,, u;, and the power spectral density of w,.
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Fig. 13. Poincaré plots of responses shown in Fig. 12 (left) and in Fig. 11 (right).
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Fig. 14. Frequency-amplitude plots based on frequency sweep analysis for v4=0.15V (left) and for v4=0.17V (right); in both plots e3=0.5.
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Fig. 15. Frequency-amplitude plot of the imperfect shell (e5=0.5).

The frequency-amplitude plot for an imperfection of the form es=0.5 will be discussed now, see Fig. 15. For this case,
the critical amplitude for the input voltage is even lower, i.e. vg=0.135V. For v4 > 1§, a region appears on the left hand side
of f=f,, where two stable harmonic solutions coexist. The frequency sweep analysis results for this case are shown in the
left plots of Fig. 16. Near f=175 and 183 Hz sudden jumps can be seen in the stepped sine results in terms of W,. One of
these jumps occurs in the small frequency region where no stable harmonic solutions exist, see enlargement A in Fig. 15. In
this small region, beating responses are found comparable to the response as shown in Fig. 12. For a slightly higher value of
va (14=0.16V), again the region of instability increases, while the response in terms of W, significantly increases in
amplitude, see the right plots of Fig. 16.
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Fig. 16. Frequency-amplitude plots based on frequency sweep analysis for es=0.5 and v4=0.14V (left) and for v4=0.16V (right).
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Fig. 17. Influence of circumferential wavenumber n and imperfection e; on v§.

Finally, the influence of the considered circumferential wavenumber n on the critical amplitude of the input voltage (v§)
is examined. In Fig. 17, the influence of n on the value of v§ is depicted for three imperfection shapes. For the considered
range of n, the lowest value of v§ is obtained for n=9 and e5;=0.5, while v§ is more than a factor two higher for n=5 and
e1=0.5. This indicates that, similar to the case of prescribed base-acceleration [5], the obtained critical value highly
depends on the imperfection shape. Furthermore, also in analogy with the results obtained for the case of prescribed base-
acceleration, the lowest obtained critical amplitudes of the input voltage are closely grouped together. As stated before,
this may suggest that if one would include additional DOFs to the model corresponding to modes with different
circumferential wavenumbers (or perform an experiment on a real cylindrical shell), multiple modes may start to interact
for v4 > v§, leading to even more complicated dynamics than observed in this section.

6. Experimental steady-state analysis

In this section, experimental results obtained for the shaker excited cylindrical shell with top mass will be discussed.
The experimental steady-state results are obtained for a varying excitation frequency and a varying excitation amplitude
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using a stepped sine procedure. During the previously presented numerical analyses, w;; was evaluated at the location,
where the largest out-of-plane displacements occurred, see Eq. (24). For the experimental analysis it is unknown, where
the largest out-of-plane displacements will occur. Therefore, the angular location for measuring the out-of-plane
displacement of the shell is chosen by testing initially a number of angular positions along the circumference of the
cylindrical shell at height x=L/2, see Fig. 3. The location, where the largest displacements are measured, is used during
the actual experiments. The measure U, is computed using the LVDT measurements, see Fig. 3.

6.1. Results

In Fig. 18, stepped frequency sweep results for various values of vy and Af = 0.5 Hz are depicted. As can be noted, for the
smallest considered amplitude of the input voltage (v4=0.02V), a single resonance peak appears near f=177 Hz close to
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Fig. 18. Frequency sweep results (‘+' sweep down, ‘ -’ sweep up).
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f>=182 Hz. By increasing the value of v,4, the amplitude of this resonance peak increases, the resonance frequency decreases
somewhat, and additional peaks appear close to this peak. Time histories of the steady-state response for f=170Hz in
terms of wy, and their PSDs are depicted in Figs. 19 and 20 for, respectively, vq = 0.06 and 0.08 V. To minimize the effect of
measurement noise, each PSD is averaged over eight sets of 2048 data points, measured using a sample frequency of 4 kHz
and an anti-aliasing filter. For v4=0.06V, the PSD is dominated by peaks at integer multiples of the excitation frequency
(F/f=1,2,3,...) indicating a harmonic response. However, for the slightly higher value v,=0.08V, additional frequency
components appear in the PSD, which exceed the measurement noise level. The time history shown in Fig. 20 seems to be
quasi-periodic or slightly chaotic. The transition from the harmonic response to the aperiodic response occurs without a
(noticeable) sudden increase in out-of-plane vibrations, i.e. the frequency-amplitude plot does not exhibit jumps for this
value of vy, see Fig. 18.

By increasing the excitation amplitude further to v4=0.14, the frequency-amplitude plot starts to exhibit jumps near
f=162Hz and near f=170Hz, see enlargement A in Fig. 18. Especially the jump near f=170Hz rapidly increases, if vy is
increased even further, see the results for v4=0.2V in Fig. 21. Furthermore, several small transition regions can be
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Fig. 19. Measured dimensionless out-of-plane displacement (w,, top) and corresponding PSD (bottom) for f=170Hz and v4=0.06 V.
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Fig. 20. Measured dimensionless out-of-plane displacement wy, (top) and corresponding PSD (bottom) for f=170Hz and v4=0.08 V.



NJ. Mallon et al. / Journal of Sound and Vibration 329 (2010) 3149-3170

T T T T

@ +
. @
1.6 ®®+ + A
Q +
O ]
Q
+
O
#}9@%
e
&
0
120 140 160 180 200 220 240
x 1073
7 T T T T @
B ©
or ®
+c0 &
lbs

I

120 140 160 180 200

f[Hz]

220 240

Fig. 21. Frequency sweep results for v4=0.2V (‘+' sweep down, ‘ <’ sweep up).

3167

observed, see enlargements A and B in Fig. 21. For this level of vy, the jump near f=170Hz can also very clearly be noted
audibly. More specifically, for the sweep down, the noise produced by the cylindrical shell suddenly significantly increases
after passing the jump. By comparing the time histories of the sweep-down response in terms of wy; in Fig. 22, i.e. at
f=170Hz just before the large jump, and in Fig. 23, i.e. at f=167.5 Hz just after the large jump, a significant change of the
response can be noted. At f=167.5 Hz, the response not only has a much larger amplitude than the response at f=170Hz,
but also has a much broader PSD compared to the PSD measured at f=170Hz.

6.2. Discussion

Experimentally obtained frequency-amplitude results have been presented for increasing values of the excitation
amplitude v4. Similar as found in the numerical analyses in Section 5, the experiments show a transition from a harmonic
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Fig. 23. Measured dimensionless out-of-plane displacement wy, (top) and corresponding PSD (bottom) for f=167.5Hz and v4=0.20V.

response to an aperiodic large amplitude response near the resonance at f=f, [Hz]. However, in the experiments for
low values of vy, first additional peaks start to appear near the resonance at f=f,, see Fig. 18. In this frequency region
transitions are found, where the response switches from a harmonic response to an aperiodic response, without a
(noticeable) sudden increase of the out-of-plane vibrations of the shell. Such behaviour is not found in the semi-analytical
analysis. For larger amplitudes of the harmonic input voltage, the experimental frequency-amplitude plot starts to exhibit
jumps near f=162 and 170 Hz for v; > 0.14 V. By increasing v, further to v4 > 0.19V, large amplitude responses with a very
broad PSD appear for excitation frequencies near f=167.5Hz, see Fig. 23. In the numerical analyses such transitions are
found for values of v, starting near 0.135V going up to 0.253V, depending on the shape of the imperfection. Taking into
consideration that the critical value for v, is very sensitive to imperfections, see Section 5, it can be concluded that the
transitions to the large amplitude, aperiodic responses in the experiments occur at more or less the same values of v, as

predicted by the semi-analytical approach.
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There may be various reasons for the remaining (quantitative) mismatches between the semi-analytical results and the
experimental results. Firstly, the mismatch may be explained by the imperfection sensitivity of the post-critical response
as illustrated in the semi-analytical analysis, compare for example Figs. 9, 14, and 16. The cylindrical shell used in the
experiments will obviously not be geometrically perfect and its actual (unknown) radial imperfection shape will be
different from the imperfection shapes considered in the semi-analytical analysis. Furthermore, at the experimental setup,
also other types of imperfections will be present, for example small misalignments between the lower and the upper
sledge, see Fig. 3, small thickness variations of the shell and non-perfect shell clamping conditions. As a second cause,
arbitrary imperfections in the shell and/or in its boundary conditions will simultaneously trigger multiple axi-
asymmetrical modes with different circumferential wavenumbers n. The effect of the participation of multiple modes with
different circumferential wavenumbers is not examined in the semi-analytical analysis. However, the effect of variation in
the circumferential wavenumber n on the dynamic stability has been considered in the current analysis for several
imperfections, see Fig. 17. From these analyses it follows that the lowest obtained critical amplitudes of the input voltage
are closely grouped together for different values of n. This suggests that in case of arbitrary imperfections, multiple modes
with different circumferential wavenumbers may start to interact for v4 > v. To examine such responses using the semi-
analytical approach, more DOFs, corresponding to modes with other circumferential wavenumbers, should be included in
the expansion of w and wy, see Egs. (12) and (13).

7. Conclusions

The dynamic stability limits of a thin cylindrical orthotropic shell with top mass, which is axially excited at its base by
an electrodynamic shaker, are determined both numerically and experimentally. To be able to compare the experimental
results with the semi-analytical results, a coupled shaker-structure model is derived. The model is validated firstly by
comparing numerical and experimental results for the FRF representing the top mass acceleration response caused by the
input voltage, and secondly by comparing experimental eigenfrequencies with eigenfrequencies of linearized models.

The coupled structure exhibits two resonances, which occur at frequencies, which are low compared to resonance
frequencies of the cylindrical shell. The first resonance frequency at f; [Hz] corresponds to a suspension mode of the shaker
mass. The second resonance frequency at f, [Hz] corresponds to a suspension mode, which is dominated by axial vibrations
of the (cylindrical shell with) top mass. Numerical analyses show that the harmonic response may become unstable near
the second resonance frequency and an aperiodic response with severe out-of-plane deformations may appear instead. The
critical value for the input voltage, for which the harmonic response changes to the severe post-critical response, highly
depends on the initial imperfections present in the shell.

Experiments qualitatively confirm the dynamic response predicted by the semi-analytical model (including the shaker
dynamics). Indeed, in the experiments it is shown that, by increasing the excitation amplitude of the harmonic input
voltage near the frequency f, [Hz], the harmonic response may switch to a severe aperiodic response. A quantitative match
between the experimental and the semi-analytical results is not realized yet. In order to achieve this, it is important to
extend the semi-analytical model with modes corresponding to multiple circumferential wavenumbers. Moreover, it will
be necessary to measure the actual imperfection of the shell under experimental investigation, so that this imperfection
can be included in the semi-analytical model.

The presented experimental results confirm the observation from the semi-analytical analysis, that the dynamic
stability analysis of base-excited cylindrical shells structures with top mass should be concentrated near a resonance of
relatively low frequency, corresponding to an axi-symmetrical suspension mode, dominated by axial vibrations of the
(cylindrical shell with) top mass.
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